China factory Custom High Torque Planetary Gearbox for Food Processing cvt gearbox

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
060 090 115 142 180 220 280 330 400
Rated Output Torque T2n N.m 1 3 27.8 115 212 470 1226 1730 4230 8200 12500
4 46.32 142 268 582 1450 2270 5120 9800 16000
5 46.32 142 268 582 1450 2270 5120 8500 12200
7 38.9 110 212 468 1130 1610 3220 5000 7600
10 18.5 100 95 255 730 1050 1820 3500 5000
2 12 46.32 142 268 582 1450 2270 5120 9800 16000
15 46.32 142 268 582 1450 2270 5120 8500 12200
20 46.32 142 268 582 1450 2270 5120 9800 16000
25 46.32 142 268 582 1450 2270 5120 8500 12200
28 46.32 142 268 582 1450 2270 5120 9800 16000
30 27.8 115 212 470 1226 1730 4230 8200 12500
35 46.32 142 268 582 1450 2270 5120 8500 12200
40 46.32 142 268 582 1450 2270 5120 9800 16000
50 46.32 142 268 582 1450 2270 5120 8500 12200
70 38.9 110 212 468 1130 1610 3220 5000 7600
100 18.5 100 95 255 730 1050 1820 3500 5000
3 120 46.32 142 268 582 1450 2270 5120 9800 16000
150 46.32 142 268 582 1450 2270 5120 8500 12200
200 46.32 142 268 582 1450 2270 5120 9800 16000
250 46.32 142 268 582 1450 2270 5120 8500 12200
280 46.32 142 268 582 1450 2270 5120 9800 16000
350 46.32 142 268 582 1450 2270 5120 8500 12200
400 46.32 142 268 582 1450 2270 5120 9800 16000
500 46.32 142 268 582 1450 2270 5120 8500 12200
700 38.9 110 212 468 1130 1610 3220 5000 7600
1000 18.5 100 95 255 730 1050 1820 3500 5000
Maximum Output Torque T2b N.m 1,2,3 3~1000 2Times of Rated Output Torque
Rated Input Speed N1n rpm 1,2,3 3~1000 4000 3500 3500 3000 3000 2500 2000 1500 1500
Maximum Input Speed N1b rpm 1,2,3 3~1000 8000 7000 7000 5000 5000 4000 3000 2000 2000
Precision Backlash P1 arcmin 1 3~1000 ≤4 ≤4 ≤4 ≤4 ≤4 ≤4 ≤8 ≤8 ≤8
arcmin 2 3~1000 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤12 ≤12 ≤12
arcmin 3 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤16 ≤16 ≤16
Standard Backlash P2 arcmin 1 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤12 ≤12 ≤12
arcmin 2 3~1000 ≤10 ≤10 ≤10 ≤10 ≤10 ≤10 ≤18 ≤18 ≤18
arcmin 3 3~1000 ≤12 ≤12 ≤12 ≤12 ≤12 ≤12 ≤24 ≤24 ≤24
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 7 14 25 50 145 225 300 330 350
Allowable Radial Force F2rb2 N 1,2,3 3~1000 1550 3250 6700 9400 14500 50000 60000 70000 90000
Allowable Axial Force F2ab2 N 1,2,3 3~1000 775 1625 3350 4700 7250 25000 30000 95000 1250000
Moment of Inertia J1 kg.cm2 1 3~10 0.18 0.75 2.85 12.4 15.3 34.8 44.9 80 255
2 12~100 0.15 0.52 2.15 7.6 15.2 32.2 41.8 75 240
3 120~1000 0.07 0.36 2.05 6.3 14.2 18.3 28.1 68 220
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 95%
2 12~100 92%
3 120~1000 85%
Noise Level dB 1,2,3 3~1000 ≤58 ≤62 ≤65 ≤70 ≤70 ≤75 ≤75 ≤75 ≤75
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.6 7.5 16 28 48 110 160 250
2 12~100 1.5 4.2 9.5 20 32 60 135 190 340
3 120~1000 1.8 4.8 11.5 24 36 72 150 225 420

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer's recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it's important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Impact of Gear Tooth Design and Profile on the Efficiency of Planetary Gearboxes

The design and profile of gear teeth have a significant impact on the efficiency of planetary gearboxes:

  • Tooth Profile: The tooth profile, such as involute, cycloid, or modified profiles, affects the contact pattern and load distribution between gear teeth. An optimized profile minimizes stress concentration and ensures smooth meshing, contributing to higher efficiency.
  • Tooth Shape: The shape of gear teeth influences the amount of sliding and rolling motion during meshing. Gear teeth designed for more rolling and less sliding motion reduce friction and wear, enhancing overall efficiency.
  • Pressure Angle: The pressure angle at which gear teeth engage affects the force distribution and efficiency. Larger pressure angles can lead to higher efficiency due to improved load sharing, but they may require more space.
  • Tooth Thickness and Width: Optimized tooth thickness and width contribute to distributing the load more evenly across the gear face. Proper sizing reduces stress and increases efficiency.
  • Backlash: Backlash, the gap between meshing gear teeth, impacts efficiency by causing vibrations and energy losses. Properly controlled backlash minimizes these effects and improves efficiency.
  • Tooth Surface Finish: Smoother tooth surfaces reduce friction and wear. Proper surface finish, achieved through grinding or honing, enhances efficiency by reducing energy losses due to friction.
  • Material Selection: The choice of gear material influences wear, heat generation, and overall efficiency. Materials with good wear resistance and low friction coefficients contribute to higher efficiency.
  • Profile Modification: Profile modifications, such as tip and root relief, optimize tooth contact and reduce interference. These modifications minimize friction and increase efficiency.

In summary, the design and profile of gear teeth play a crucial role in determining the efficiency of planetary gearboxes. Optimal tooth profiles, shapes, pressure angles, thicknesses, widths, surface finishes, and material selections all contribute to reducing friction, wear, and energy losses, resulting in improved overall efficiency.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here's a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Advantages of Planetary Gearboxes Compared to Other Gearbox Configurations

Planetary gearboxes, also known as epicyclic gearboxes, offer several advantages compared to other gearbox configurations. These advantages make them well-suited for a wide range of applications. Here's a closer look at why planetary gearboxes are favored:

  • Compact Size: Planetary gearboxes are known for their compact and space-efficient design. The arrangement of multiple gears within a single housing allows for high gear reduction ratios without significantly increasing the size of the gearbox.
  • High Torque Density: Due to their compact design, planetary gearboxes offer high torque density, meaning they can transmit a significant amount of torque relative to their size. This makes them ideal for applications where space is limited, but high torque is required.
  • Efficiency: Planetary gearboxes can achieve high efficiency levels, especially when properly lubricated and well-designed. The arrangement of multiple meshing gears allows for load distribution, reducing individual gear tooth stresses and minimizing losses due to friction.
  • Multiple Gear Stages: Planetary gearboxes can be designed with multiple stages, allowing for higher gear reduction ratios. This is particularly advantageous when precise control of output speed and torque is required.
  • High Gear Ratios: Planetary gearboxes can achieve high gear reduction ratios in a single stage, eliminating the need for multiple external gears. This simplifies the overall design and reduces the number of components.
  • Load Sharing: The multiple gear meshing arrangements in planetary gearboxes distribute loads evenly across multiple gears, reducing the stress on individual components and enhancing overall durability.
  • High Precision: Planetary gearboxes offer high precision and accuracy in gear meshing, making them suitable for applications that demand precise motion control.
  • Quiet Operation: The design of planetary gearboxes often leads to smoother and quieter operation compared to some other gearbox configurations, contributing to improved user experience.

Overall, the advantages of planetary gearboxes in terms of size, torque density, efficiency, versatility, and precision make them an attractive choice for a wide range of applications across industries, including robotics, automotive, aerospace, and industrial machinery.

China factory Custom High Torque Planetary Gearbox for Food Processing   cvt gearbox	China factory Custom High Torque Planetary Gearbox for Food Processing   cvt gearbox
editor by CX 2024-03-03

Recent Posts