China Custom High Performance Planetary Gearbox for Woodworking Machinery gearbox design

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
060 090 115 142 180 220 280 330 400
Rated Output Torque T2n N.m 1 3 27.8 115 212 470 1226 1730 4230 8200 12500
4 46.32 142 268 582 1450 2270 5120 9800 16000
5 46.32 142 268 582 1450 2270 5120 8500 12200
7 38.9 110 212 468 1130 1610 3220 5000 7600
10 18.5 100 95 255 730 1050 1820 3500 5000
2 12 46.32 142 268 582 1450 2270 5120 9800 16000
15 46.32 142 268 582 1450 2270 5120 8500 12200
20 46.32 142 268 582 1450 2270 5120 9800 16000
25 46.32 142 268 582 1450 2270 5120 8500 12200
28 46.32 142 268 582 1450 2270 5120 9800 16000
30 27.8 115 212 470 1226 1730 4230 8200 12500
35 46.32 142 268 582 1450 2270 5120 8500 12200
40 46.32 142 268 582 1450 2270 5120 9800 16000
50 46.32 142 268 582 1450 2270 5120 8500 12200
70 38.9 110 212 468 1130 1610 3220 5000 7600
100 18.5 100 95 255 730 1050 1820 3500 5000
3 120 46.32 142 268 582 1450 2270 5120 9800 16000
150 46.32 142 268 582 1450 2270 5120 8500 12200
200 46.32 142 268 582 1450 2270 5120 9800 16000
250 46.32 142 268 582 1450 2270 5120 8500 12200
280 46.32 142 268 582 1450 2270 5120 9800 16000
350 46.32 142 268 582 1450 2270 5120 8500 12200
400 46.32 142 268 582 1450 2270 5120 9800 16000
500 46.32 142 268 582 1450 2270 5120 8500 12200
700 38.9 110 212 468 1130 1610 3220 5000 7600
1000 18.5 100 95 255 730 1050 1820 3500 5000
Maximum Output Torque T2b N.m 1,2,3 3~1000 2Times of Rated Output Torque
Rated Input Speed N1n rpm 1,2,3 3~1000 4000 3500 3500 3000 3000 2500 2000 1500 1500
Maximum Input Speed N1b rpm 1,2,3 3~1000 8000 7000 7000 5000 5000 4000 3000 2000 2000
Precision Backlash P1 arcmin 1 3~1000 ≤4 ≤4 ≤4 ≤4 ≤4 ≤4 ≤8 ≤8 ≤8
arcmin 2 3~1000 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤12 ≤12 ≤12
arcmin 3 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤16 ≤16 ≤16
Standard Backlash P2 arcmin 1 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤12 ≤12 ≤12
arcmin 2 3~1000 ≤10 ≤10 ≤10 ≤10 ≤10 ≤10 ≤18 ≤18 ≤18
arcmin 3 3~1000 ≤12 ≤12 ≤12 ≤12 ≤12 ≤12 ≤24 ≤24 ≤24
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 7 14 25 50 145 225 300 330 350
Allowable Radial Force F2rb2 N 1,2,3 3~1000 1550 3250 6700 9400 14500 50000 60000 70000 90000
Allowable Axial Force F2ab2 N 1,2,3 3~1000 775 1625 3350 4700 7250 25000 30000 95000 1250000
Moment of Inertia J1 kg.cm2 1 3~10 0.18 0.75 2.85 12.4 15.3 34.8 44.9 80 255
2 12~100 0.15 0.52 2.15 7.6 15.2 32.2 41.8 75 240
3 120~1000 0.07 0.36 2.05 6.3 14.2 18.3 28.1 68 220
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 95%
2 12~100 92%
3 120~1000 85%
Noise Level dB 1,2,3 3~1000 ≤58 ≤62 ≤65 ≤70 ≤70 ≤75 ≤75 ≤75 ≤75
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.6 7.5 16 28 48 110 160 250
2 12~100 1.5 4.2 9.5 20 32 60 135 190 340
3 120~1000 1.8 4.8 11.5 24 36 72 150 225 420

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer's recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it's important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a crucial role in enhancing the efficiency and performance of conveyor belts in mining operations:

  • High Torque Transmission: Planetary gearboxes are capable of transmitting high torque with minimal backlash. This feature ensures that the gearbox efficiently handles the substantial load requirements of conveyor belts used in mining, preventing slippage and ensuring reliable material transportation.
  • Compact Design: The compact size of planetary gearboxes allows them to be integrated seamlessly into conveyor systems, optimizing space utilization and allowing for efficient equipment layout in mining environments.
  • Variable Speed Control: Planetary gearboxes provide precise speed control and can accommodate various speed requirements of conveyor belts. This versatility allows operators to adjust the conveyor speed to match specific material handling needs.
  • High Efficiency: The inherent design of planetary gearboxes minimizes energy losses due to efficient power transmission. This efficiency translates into reduced energy consumption and operational costs over the lifetime of the conveyor system.
  • Reliability and Durability: Planetary gearboxes are engineered to withstand demanding conditions often encountered in mining environments, including shock loads, abrasive materials, and harsh weather. Their robust construction ensures reliable operation and minimal downtime.
  • Low Maintenance: The durability of planetary gearboxes leads to reduced maintenance requirements. This benefit is particularly valuable in mining operations where minimizing downtime is essential for maintaining high productivity levels.
  • Customizability: Planetary gearboxes can be tailored to suit specific conveyor system requirements, including gear ratios, torque ratings, and mounting options. This flexibility allows for optimized system design and performance.

By effectively transmitting power, providing accurate speed control, and offering a compact and robust design, planetary gearboxes significantly enhance the efficiency and reliability of conveyor belts in mining operations. Their ability to handle high loads, operate with low maintenance needs, and withstand harsh conditions contributes to improved productivity and reduced operational costs.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application's requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it's essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer's Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox's operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear's size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears' external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China Custom High Performance Planetary Gearbox for Woodworking Machinery   gearbox design		China Custom High Performance Planetary Gearbox for Woodworking Machinery   gearbox design
editor by CX 2024-04-03

Recent Posts